Schlagwort Archiv: Software

Raspberry Video Camera – Teil 30: Software für Kamera Modell 200

Das Modell 200 ist die kleine Ausgabe einer Raspberry Video Cam auf Basis eines Raspberry Pi Zero W. Im Vergleich zum ursprünglichen Modell 850, das einen großen Raspberry Pi 3 als Rechner hat. Aber braucht ein Modell 200 eine andere Software als das Modell 850? Nein, braucht es nicht. Allerdings sind meine Anleitungen zur Softwareinstallation inzwischen bald ein Jahr alt und für Raspbian gibt es eine neue Version Stretch. Deshalb fasse ich in diesem Artikel noch einmal alle erforderlichen Installationsschritte aus verschiedenen vorangegangenen Beiträgen zusammen und verweise für umfangreichere Erklärungen auf meine ursprünglichen Artikel. Die folgende Installationsanleitung gilt für alle fremdgetriggerten Kameras, egal ob Modell 200 oder 850. (mehr …)

Feinstaubsensor – Teil 12: Sensordaten selbst speichern

Unser Eigenbau-Feinstaubsensor ist fertig und liefert deine Daten an die Feinstaubkarte und vielleicht einige andere Umweltdatenbanken. Von dort können wir uns die Daten auch zurückholen – die eigenen und auch die von fremden Sensoren. Aber es gibt auch die Möglichkeit, einen eigenen Server zu betreiben, an den der Feinstaubsensor seine Daten zusätzlich abliefert. Die kann man dann nach Belieben in einer eigenen Datenbank speichern, auswerten, grafisch aufbereiten und als Webseite anzeigen. In diesem Artikel zeige ich, wie die Sensordaten vom Feinstaubsensor auf einen eigenen Server kommen. (mehr …)

Feinstaubsensor – Teil 9: Konfiguration

Der mechanische Aufbau des Feinstaubsensors ist abgeschlossen, die Feinstaub-Firmware ist geflasht und die Komponenten sind verkabelt. Bevor nun das Gehäuse aus zwei Abwasserrohrbögen geschlossen wird, sollten wir die Schaltung unter Strom setzen, die Konfiguration vornehmen und die Funktion des Feinstaubsensors prüfen. Viel ist nicht zu konfigurieren, im wesentlichen geht es um den WLAN-Zugang. Für die Konfiguration stellt der Feinstaubsensor eine komfortable Weboberfläche zur Verfügung und so lange der Sensor noch keinen WLAN-Zugang hat, bietet er sich selbst als WLAN-Accesspoint an, mit dem wir uns verbinden können. Zum Beispiel mit dem Smartphone. (mehr …)

Feinstaubsensor – Teil 5: Konfigurationsdaten löschen

Die Konfigurationsdaten des Feinstaubsensors löschenbraucht man das? Im Normalfall nicht und wer nicht explizit ein Problem damit hat, eine fehlerhafte Konfiguration nicht mehr weg zu bekommen, der kann dieses Kapitel getrost überspringen. Wichtig zu wissen ist vielleicht, was mit Konfigurationsdaten des Feinstaubsensors überhaupt gemeint ist. Das sind die Daten, die sich über die Web-Konfigurationsoberfläche des Feinstaubsensors eingeben lassen, also vor allem WLAN-Netz und Passwort. So lange man Zugang zu dieser Weboberfläche hat ist alles in Ordnung und man kann darüber alle Daten ändern. Nur wenn das nicht mehr klappt, dann kann das Löschen aller Konfigurationsdaten das System quasi in den Urzustand zurück versetzen. (mehr …)

Feinstaubsensor – Teil 4: Feinstaub-Software flashen

Wenn die Arduino IDE auf einem PC installiert ist und die USB-Verbindung vom PC zum NodeMCU-Board funktioniert, dann können wir uns dran machen, die Feinstaub-Software aufzuspielen. Das sollte in jedem Fall passieren, bevor wir die Komponenten verkabeln und unter Strom setzen, damit keine ungewollten Spannungspegel die Bauteile zerstören können. Das Flashen der Feinstaub-Software kann auf zwei verschiedene Arten geschehen. Wir können eine fertig kompilierte Version flashen, oder wir kompilieren selbst in der Arduino IDE. Ich zeige hier beide Möglichkeiten für einen Linux-PC. (mehr …)

Feinstaubsensor – Teil 3: Arduino IDE installieren

Bevor die Komponenten des Feinstaubsensors zusammengebaut und verkabelt werden, muss die Software aufgespielt werden. Dazu sind ein paar Vorarbeiten nötig – unter anderem die Installation der Arduino IDE (integrated development environment) auf einem PC. Von diesem wird die Feinstaub-Software dann mit Hilfe der Arduino IDE per USB auf den NodeMCU geflasht (also ins Flash-Memory übertragen). Verwenden kann man dazu einen Windows-PC – ich zeige aber wie es geht anhand eines Linux-Rechners. Das kann auch eine Virtuelle Maschine sein, sie muss lediglich über den USB-Anschluss verfügen können. (mehr …)

Raspberry Video Camera – Teil 26: Optimierungen gegen Frame Drops

Wer kennt das? Die Raspberry Video Camera zeichnet ein Full-HD Video auf, aber wenn man es sich danach anschaut, gibt es gelegentlich einen Sprung im Filmablauf, als ob kurze Sequenzen fehlen würden. Kurze Sequenzen, das können einzelne Frames sein, die gar nicht auffallen oder auch einmal Aussetzer über mehrere Sekunden. Frame Drops also Bilder, die bei der Aufnahme verloren gegangen sind. Wer so etwas bei seinen Versuchen mit der Raspi Cam nicht beobachtet, der kann glücklich sein und diesen Artikel getrost überspringen. Für alle anderen teste und bewerte ich hier eine Anzahl von Tuningmaßnahmen, um die Frame Drops zu minimieren. (mehr …)

Raspberry Video Camera – Teil 25: Zweite Kamera

Seit den ersten Tagen der Raspberry Video Cam gibt es das Konzept der Multi-Kamera-Fähigkeit. Nun wird es Zeit, dass ich auch hier im Blog endlich vorstelle, wie sich eine zweite (und dritte und vierte) Kamera zuschalten lässt. Dabei geht es vor allen Dingen darum, dass eine Kamera das Triggern übernimmt und weitere abhängige Kameras auf dieses Auslösesignal reagieren. Damit wird erreicht, dass eine Szene gleichzeitig aus mehreren Blickwinkeln aufgenommen wird. Später kann dann ein Video aus dem Material von mehreren Kameras geschnitten werden. (mehr …)

Raspberry Video Camera – Teil 24: Anpassung von Programmparametern

Diesmal stelle ich keine neue Programmversion für die Raspberry Pi Video Cam vor, sondern gehe im Detail auf all die Konstanten ein, die sich inzwischen am Programmanfang angesammelt haben. Damit möchte ich all jene, die mein Python-Programm ausprobieren, ermutigen selbst Parameter zu verändern. Dadurch lassen sich Anpassungen an die eigenen Gegebenheiten vornehmen und an die Tiere, die erkannt und gefilmt werden sollen. Parameter-Tuning ist auch sinnvoll um die Erkennungsrate zu steigern um möglichst kein Tier zu verpassen. (mehr …)

Raspberry Video Camera – Teil 23: Verbesserung durch ROI und Aufnahmezeitbegrenzung

Auch ein gutes Programm lässt sich weiter verbessern und zwei solche Verbesserungen für die selbstlernende Farberkennung schlage ich hier vor: ROI steht hier nicht für „Return on Investment“ sondern für Region of Interest. Und das bedeutet, dass wir für die Farberkennung nicht mehr das gesamte Bild verwenden, sondern nur eine bestimmte Region, in der wir das Auftauchen eines Objekts vermuten. Das ist Thema 1 und die zweite Verbesserung führt eine generelle Aufnahmezeitbegrenzung für Videos ein um endlos lange Recordings zu vermeiden. Beide Verbesserungen können hilfreich sein, sind aber sicher nicht in jeder Umgebung sinnvoll. (mehr …)